calculated for any species, but it is least dependent on the chosen time horizon for species with lifetimes less than half the time horizon of the metric (Collins et al., 2020). Pulse-step metrics can therefore be useful where time dependence of pulse metrics, like GWP or GTP, complicates their use (see Box 7.3). For a stable global warming from non-CO₂ climate agents (gas or aerosol) their effective radiative forcing needs to gradually decrease (Tanaka and O'Neill, 2018). Cain et al. (2019) find this decrease to be around 0.3% yr⁻¹ for the climate response function in AR5 (Myhre et al., 2013b). To account for this, a quantity referred to as GWP* has been defined that combines emissions (pulse) and changes in emission levels (step) approaches (Cain et al., 2019; Smith et al., 2021)². The emission component accounts for the need for emissions to decrease to deliver a stable warming. The step (sometimes referred to as flow or rate) term in GWP* accounts for the change in global surface temperature that arises in from a change in short-lived greenhouse gas emission rate, as in CGTP, but here approximated by the change in emissions over the previous 20 years. Cumulative CO₂ emissions and GWP*-based cumulative CO₂ equivalent greenhouse gas (GHG) emissions multiplied by TCRE closely approximate the global warming associated with emissions timeseries (of CO₂ and GHG, respectively) from the start of the time-series (Lynch et al., 2020). Both the CGTP and GWP* convert short-lived greenhouse gas emission rate changes into cumulative CO₂ equivalent emissions, hence scaling these by TCRE gives a direct conversion from short-lived greenhouse gas emission to global surface temperature change. By comparison expressing methane emissions as CO₂ equivalent emissions using GWP-100 overstates the effect of constant methane emissions on global surface temperature by a factor of 3-4 over a 20-year time horizon (Lynch et al., 2020, their Figure 5), while understating the effect of any new methane emission source by a factor of 4-5 over the 20 years following the introduction of the new source (Lynch et al., 2020, their Figure 4). ## [START FIGURE 7.21 HERE] Figure 7.21: Emission metrics for two short-lived greenhouse gases: HFC-32 and CH₄, (lifetimes of 5.4 and 11.8 years). The temperature response function comes from Supplementary Material 7.SM.5.2. Values for non-CO₂ species include the carbon cycle response (Section 7.6.1.3). Results for HFC-32 have been divided by 100 to show on the same scale. (a) temperature response to a step change in short-lived greenhouse gas emission. (b) temperature response to a pulse CO₂ emission. (c) conventional GTP metrics (pulse vs pulse). (d) combined-GTP metric (step versus pulse). Further details on data sources and processing are available in the chapter data table (Table 7.SM.14). ## [END FIGURE 7.21 HERE] Figure 7.22 explores how cumulative CO₂ equivalent emissions estimated for methane vary under different emission metric choices and how estimates of the global surface air temperature (GSAT) change deduced from these cumulative emissions compare to the actual temperature response computed with the two-layer emulator. Note that GWP and GTP metrics were not designed for use under a cumulative carbon dioxide equivalent emission framework (Shine et al., 1990, 2005), even if they sometimes are (e.g. Cui et al., 2017; Howard et al., 2018) and analysing them in this way can give useful insights into their physical properties. Using these standard metrics under such frameworks, the cumulative CO₂ equivalent emission associated with methane emissions would continue to rise if methane emissions were substantially reduced but remained above zero. In reality, a decline in methane emissions to a smaller but still positive value could cause a declining warming. GSAT changes estimated with cumulative CO₂ equivalent emissions computed with GWP-20 matches the warming trend for a few decades but quickly overestimates the response. Cumulative emissions using GWP-100 perform well when emissions are increasing but not when they are stable or decreasing. Cumulative emissions using GTP-100 consistently underestimate the warming. Cumulative emissions using either CGTP or GWP* approaches can more closely match the GSAT evolution (Allen et al., 2018b; Cain et al., 2019; Collins et al., 2020; Lynch et al., 2020). ² To calculate CO₂ equivalent emissions under GWP*, the short-lived greenhouse gas emissions are multiplied by GWP100 × 0.28 and added to the net emission increase or decrease over the previous 20 years multiplied by GWP100 x 4.24 (Smith et al., 2021).